

AN

This 1s not a beginner level talk on
GraphQL

These notes are based on my personal
experiences and YMMV

Perfectly OK to disagree with the content

SERVER

* Exposes an object graph called schema with types
* Exposes a set of operations called Query
(read), Mutations (create, update, delete) and
Subscriptions (web sockets)
* These operations are powered by functions

called resolvers

Birds eye view

CLIENT

* Consumes the schema by executing the exposed
operations

* Requests only the data it needs as a result of these
operation executions

GitHub GraphQL API Signed in as helfer. You're ready to explore! = Sign out

GraphiQL ([B> | Prettify < Docs
1+ query GetRepositorylIssues { v {
2~ repositoryOwner(login: "apollostack") { v "data": {
3~ repository(name: "apollo-client") { v "repositoryOwner": {
4 name v "repository"”: {
5 description "name": "apollo-client",
6 stargazers { "description”: ":rocket: A simple
7 totalCount caching client for any GraphQL server and UI
8 } framework",
9 } "stargazers": {
10 } "totalCount": 863
chil } 3
12 }
}
}

Why GraphQL ?

*Flexible, introspectable API putting API
consumers first.

*Free input validation

*Solves what so many HyperMedia formats
could not solve.

* Design by contract in a typesafe way.

* Plays well with other server technologies.

* Makes Ul dev much easier

What tech

stack should |
use ?7?

* Personal preference
* Great community
* Productive

* Not heavily opinionated

e graphgl-go

 KGraphOL

e Apollo Server
 TypeGraphdgl

 graphgl-ruby

PROGRAMMING

Language

e graphene

Find your own flavor of Graphql Server here https://graphgl.org/code/

https://graphql.org/code/
https://github.com/pgutkowski/KGraphQL
https://graphql-ruby.org/
https://github.com/graph-gophers/graphql-go
https://graphene-python.org/
https://www.apollographql.com/docs/apollo-server/
https://19majkel94.github.io/type-graphql/

Lessons
Learned

Requirements

Be extremely
consumer

focused

Graphql Dev Ul/UX Dev

Q AWS AppSync £

e

W : ' D Hasura GraphQL Engine
3 IDE “: ‘:. o :\J]

-

GraphQL in the cloud ? (GrAAS)

* Don’t need to rewrite everything in GraphQL

* Pick a pagination convention from the beginning
and stick to it.

_ * Utilize GraphQL's ability to return errors. This is

where explicit error codes are a good idea.

* Be very clear about the authentication and
Important i
. . authorization strategy. Leverage an external
St Uff IS Stl I | service like Cognito/Auth0/Okta or a home grown
i m po rt a nt solution as a service. Isolate this as much as you
can.

* Must use log aggregation and monitoring to see
what's going on with the service.

* Protect your API against over fetching. No one
likes a slow API

* Use a code generator to generate
language compatible types to keep

_ up with the growing schema

* Use tools like graphgl-inspector to
ensure schema is always backwards
compatible, type uniqueness and

Take care of

the schema schema coverage. Helps control
schema size as well.

https://graphql-inspector.com/

Detected the following changes (6) between schemas:

Field posts was removed from object type Query

Field modifiedAt was removed from object type Post

Field Post.id changed type from ID to ID!

Deprecation reason on field Post.title has changed from No more used to
Field Post.title changed type from String to String!

Field Post.createdAt changed type from String to String!

Detected 2 breaking changes

Schema Comparison

Detected 1 invalid document:
in ./documents/post.graphql:

- Cannot query field createdAtSomePoint on type Post. Did you mean createdAt?

Detected 1 document with deprecated fields:
warn in ./documents/post.graphql:

- The field Post.title is deprecated. No more used

Schema to Document Validation

type Post

00000 EmailPost
2000 BlogPost
0000 MailPost

type BlogPost

20080 MailPost
0000 Post

2000 EmailPost

type MailPost

00000 BlogPost
2000 EmailPost
0000 Post

type EmailPost
G008 Post

0000 MailPost

BlogPost

Schema
I n Sig htS Schema coverage based on documents:

Query
post

Performance

= N+1 problem is very real. Use a library
like dataloader that works for your stack

= Run performance tests against the hot
queries and mutations to identify which
ones.

= Since graphql resolvers can pull data
from anywhere, don’t hesitate to use high
performance stacks or data source. Here
1s how Airbnb solved it.

https://github.com/facebook/dataloader
https://medium.com/airbnb-engineering/reconciling-graphql-and-thrift-at-airbnb-a97e8d290712

Is there an ugly side to this GraphQL thing ?

Metadata in the form of directives are not
visible to the consumer of the API.
Example auth scopes/constraints applied
to schema

Using GraphQL for uploading files feels
very hacky.

GraphQL subscriptions feel a bit half
baked.

Schema stitching, a technique where we
combine schemas from other apis and
delegate the operations to the
respective schemas. It works great but
can add work around authn/error
logging/tracing.

\
\

\
A

THANK\YOU FOR'LISTE

Ed Grahulbanialz

b
=
=
O
9
n
=
O
©)
]
L
@
Q
(W

Rahul Ballal

https://github.com/rahulballal

