




This is not a beginner level talk on 
GraphQL
These notes are based on my personal 
experiences and YMMV
Perfectly OK to disagree with the content



Birds eye view

SERVER

• Exposes an object graph called schema with types
• Exposes a set of operations called Query 

(read), Mutations (create, update, delete) and 
Subscriptions ( web sockets )

• These operations are powered by functions 
called resolvers

CLIENT

• Consumes the schema by executing the exposed 
operations

• Requests only the data it needs as a result of these 
operation executions

What is GraphQL ?





Why GraphQL ?

•Flexible, introspectable API putting API 
consumers first.
•Free input validation
•Solves what so many HyperMedia formats 
could not solve.
•Design by contract in a typesafe way.
•Plays well with other server technologies.
•Makes UI dev much easier



What tech 
stack should I 

use ??

• Personal preference

• Great community

• Productive

• Not heavily opinionated



Find your own flavor of Graphql Server here https://graphql.org/code/

• KGraphQL

• graphql-ruby

• graphql-go

• graphene

• Apollo Server
• TypeGraphql

https://graphql.org/code/
https://github.com/pgutkowski/KGraphQL
https://graphql-ruby.org/
https://github.com/graph-gophers/graphql-go
https://graphene-python.org/
https://www.apollographql.com/docs/apollo-server/
https://19majkel94.github.io/type-graphql/


Lessons 
Learned



Be extremely 
consumer 
focused

Requirements

UI/UX Dev Graphql Dev



GraphQL in the cloud ? (GrAAS)



Important 
stuff is still 
important

• Don’t need to rewrite everything in GraphQL

• Pick a pagination convention from the beginning 
and stick to it.

• Utilize GraphQL's ability to return errors. This is 
where explicit error codes are a good idea.

• Be very clear about the authentication and 
authorization strategy. Leverage an external 
service like Cognito/Auth0/Okta or a home grown 
solution as a service. Isolate this as much as you 
can.

• Must use log aggregation and monitoring to see 
what's going on with the service.

• Protect your API against over fetching. No one 
likes a slow API



Take care of 
the schema

• Use a code generator to generate 
language compatible types to keep 
up with the growing schema

• Use tools like graphql-inspector to 
ensure schema is always backwards 
compatible, type uniqueness and 
schema coverage. Helps control 
schema size as well.

https://graphql-inspector.com/


Schema Comparison



Schema to Document Validation



Schema Insights

Schema 
Insights



Performance

▪N+1 problem is very real. Use a library 
like dataloader that works for your stack

▪ Run performance tests against the hot 
queries and mutations to identify which 
ones.

▪ Since graphql resolvers can pull data 
from anywhere, don’t hesitate to use high 
performance stacks or data source. Here 
is how Airbnb solved it.

https://github.com/facebook/dataloader
https://medium.com/airbnb-engineering/reconciling-graphql-and-thrift-at-airbnb-a97e8d290712


Is there an ugly side to this GraphQL thing ?



• Metadata in the form of directives are not 
visible to the consumer of the API. 
Example auth scopes/constraints applied 
to schema

• Using GraphQL for uploading files feels 
very hacky.

• GraphQL subscriptions feel a bit half 
baked.

• Schema stitching, a technique where we 
combine schemas from other apis and 
delegate the operations to the 
respective schemas. It works great but 
can add work around authn/error 
logging/tracing.



Rahul Ballal  rballal@dius.com.au @rahulballal7 rahulballal

https://github.com/rahulballal

